一、生態學重點學科簡介
圍繞生態與環境毒理學、污染防治與修復、生物質能源資源化轉化等國家中長期發展的重大需求開展基礎和應用基礎研究。榮獲安徽省科學技術獎(自然科學類)三等獎、淮南市科學技術獎三等獎和六安市青年科技進步獎各1項,獲批淮南市創新團隊3個、淮南師范學院科研創新團隊1個。
團隊成員先后主持國家級科研項目6項,省部級科研項目15項,廳局級科研項目29項。以第一作者或通訊作者在Environ Sci Technol、J Hazard Mater、Chemosphere、Sci Total Environ、Sci Rep等業內國際知名SCI期刊發表論文56篇,中文核心期刊論文150余篇。在典型重金屬和有機污染物對動、植物的致毒效應機理與污染防治等領域取得了一定研究成果,其中水稻重金屬污染的葉面阻斷技術的應用研究已進入大田中試階段。
二、研究方向
(1)環境與生態毒理學
圍繞典型環境污染物對蚯蚓、線蟲、農作物等致毒效應機理開展實驗室研究,揭示了鎘、鉛、砷、抗生素、雙酚A等典型無機和有機污染物的潛在毒性和致毒機理,為診斷和評價其生態風險性提供了科學依據。
(2)污染生態化學與污染防治
應用環境化學研究方法解析典型重金屬、抗生素等污染物在土壤、水體以及農作物中的環境行為和歸趨;研究典型納米溶膠阻斷土壤鎘、鉛等重金屬在農作物中的遷移、富集及其潛在生態風險性和食品安全性,為消減農作物的重金屬污染探尋新的防治途徑。
(3)生物質能源資源化轉化
篩選特異性高效菌株,結合微生物發酵工藝,探索應用這些菌株將農作物秸稈或中間代謝物進一步轉化為有機能源。
三、學術隊伍
現有成員21人,其中教授5人、副教授9人,擁有博士學位14人,碩士學位4人?,F有安徽省教學名師2人,省優秀教師1人,安徽大學兼職碩士生導師2名,安徽省“特支計劃”創新創業領軍人才1人,校級教學名師2人,校級教壇新秀6人,校學科拔尖人才2名。
四、科學研究
先后主持國家級科研項目6項,省部級科研項目15項,廳局級科研項目29項。以第一或通訊作者發表SCI論文56篇,中文核心期刊論文150余篇,獲批發明專利5項。榮獲安徽省科學技術獎(自然科學類)三等獎、淮南市科學技術獎三等獎和六安市青年科技進步獎各1項,獲批淮南市創新團隊3個、淮南師范學院科研創新團隊1個。
(一)科研項目
1、國家級項目
(1)稀土對植物作用的Hormesis效應的機理研究,國家自然科學基金面上項目(20877032),2008年,主持人:汪承潤.
(2)PI3K途徑介導的依賴于秀麗線蟲p53的砷暴露細胞凋亡與增殖的分子機制研究,國家自然科學基金(21077040),2010年,主持人:王順昌.
(3)三丁基錫對秀麗隱桿線蟲的致毒機理研究,國家自然科學基金青年項目(20907016),2009年,主持人:王云.
(4)基于纖維素降解的牦牛瘤胃未培養微生物的功能研究、國家自然科學基金青年項目(31200007),2012年,主持人:張科貴.
(5)己酸二元發酵體系中甲烷菌促進己酸生成的機制研究,國家自然科學基金青年項目(項目編號:31501461),主持人:顏守保;
(6)轉運蛋白TwPDR1在介導雷公藤甲素胞外分泌中的功能與磷酸化調控機制(31800256),國家自然科學基金青年項目,主持人:繆國鵬
2、省級科研項目
(1)基于秀麗線蟲的水體微囊藻毒素毒性評價及其損傷信號傳導,安徽省高校自然科學基金重大項目(ZD200909),主持人:王順昌;
(2)基于秀麗線蟲IGF-1R/PI-3K/AKT信號傳導途徑的砷誘導細胞凋亡和細胞周期停滯,安徽省自然科學基金項目(90413257),主持人:王順昌;
(3)利用模式生物秀麗線蟲評價微囊藻毒素的免疫毒性及其作用機制,安徽省高層次人才創新創業基金項目(2009Z62),主持人:王順昌;
(4)硅硒溶膠在水稻富硒降鎘中的應用基礎研究,安徽省自然科學基金面上項目(1608085MB44),主持人:汪承潤;
(5)水稻納米富硒降鎘的效應機理與應用研究,安徽省高等學校自然科學研究重大項目(KJ2015ZD37),主持人:汪承潤;
(6)重金屬非單調量效關系在土壤污染診斷中的應用基礎研究,安徽省自然科學基金面上項目(1208085MB17),主持人:汪承潤;
(7)重金屬與碳納米管的聯合毒性效應、作用機理及安全性評價,污染控制與資源化研究國家重點實驗室開放課題資助項目(PCRRF10020),主持人:汪承潤;
(8)外源稀土促進植物體抗氧化脅迫的微觀機理研究,污染控制與資源化研究國家重點實驗室開放課題資助項目(PCRRF08011),主持人:汪承潤;
(9)秀麗線蟲中細胞核RNA干擾造成的染色體修飾,安徽省自然科學基金項目(1608085MC68),主持人:王云;
(10)秀麗線蟲中siRNA對染色質修飾與細胞凋亡的調控機制,中國博士后科學基金(2015M582006),主持人:王云;
(11)基于纖維素降解的牦牛瘤胃未培養微生物的功能研究,安徽省自然科學基金面上項目(1308085MC31),主持人:張科貴;
(12)轉錄因子TwTGAP1在雷公藤內酯醇生物合成中的功能與應用,安徽省自然科學基金項目(1708085QC52),主持人:繆國鵬;
(13)水鳥群落特征對沿淮濕地生境變化響應機制,安徽省自然科學基金項目(1408085MC51),主持人:陳錦云;
(14)大氣CO2和O3濃度升高對底泥微生物分子多態性變化的影響,污染控制與資源化研究國家重點實驗室研究項目(PCRRF12014),主持人:施翠娥;
(15)己酸二元發酵體系研究(2013SQRL070ZD),安徽省高校省級優秀青年人才基金重點項目,主持人:顏守保;
(16)己酸二元體系發酵機理研究(1508085QC56),安徽省自然科學基金項目,主持人:顏守保;
(17)釀酒丟糟資源化綜合利用關鍵技術研究(1804a07020122),安徽省重點研究與開發計劃項目,主持人:顏守保。
3、廳局級科研項目
(1)輕稀土在防治蔬菜病害和促進農藥降解中的應用及其生理機制的研究(2005KJ197),安徽省高校自然科學基金項目,主持人:汪承潤;
(2)典型工業化廢水的生態毒性監測與安全性評價技術(KJ2012Z381),安徽省高校省級自然科學產學研項目,主持人:汪承潤;
(3)淮河與巢湖水質污染對淡水魚類的毒性效應(KJ2008B200),安徽省高校自然科學研究項目,主持人:王云;
(4)反芻動物瘤胃微生物混合培養體系對纖維素的降解(KJ2010B201),安徽省教育廳自然科學基金項目,主持人:張科貴;
(5)轉運蛋白TwPDR1在雷公藤甲素胞外分泌中的功能驗證(KJ2016A668),安徽省教育廳自然科學基金重點項目,主持人:繆國鵬;
(6)基于二級食物鏈水平環境因子作用下的納米銀毒性效應研究(KJ2018A0471),安徽省教育廳自然科學基金重點項目,主持人:羅勛;
(7)貓聽覺中樞初級聽皮層GABA受體表達的年齡相關性比較研究(KJ2009B156),安徽省教育廳自然科學研究項目,主持人:羅勛;
(8)整合組學數據預測肝癌關鍵基因及其致病機制研究(KJ2013B259),安徽省教育廳自然科學研究項目,主持人:張際峰;
(9)基于生物網絡篩查肝癌易感基因研究(gxyqZD2016264),安徽省教育廳自然科學基金重點項目,主持人:張際峰;
(10)利用煤矸石、油菜秸稈等廢棄資源開發蔬菜有機生態型無土栽培及產業化生產技術(KJ2009A115),安徽省教育廳自然科學基金重點項目,主持人:童貫和;
(11)模擬酸雨對淮南地區農作物的傷害研究(2003kj020zc),安徽省教育廳自然科學基金項目,主持人:童貫和;
(12)篩選拮抗黃曲霉的黑曲霉突變株及活性物質的分離純化(KJ2010B207),安徽省教育廳自然科學基金項目,主持人:施翠娥;
(13)煤礦塌陷區生態恢復模式對土壤微生物多樣性變化的影響(KJ2015A279),安徽省教育廳自然科學基金重點項目,主持人:施翠娥;
(14)2016年高校優秀中青年骨干人才國內外訪學研修重點項目(gxfxZD2016205),安徽省人事廳,主持人:施翠娥;
(15)多類型生物炭重組蚯蚓堆肥體系對污泥中重金屬穩定的效應及其機制研究(KJ2018A0473),安徽省高等學校自然科學研究重點項目,主持人:儲昭霞;
(16)玉竹莖、葉藥物成分分析(2003KJ296),安徽省教育廳自然科學基金一般項目,主持人:程濱;
(17)菊酯作用下的小菜蛾差異表達蛋白分析(KJ2008A007),安徽省教育廳自然科學研究重點項目,主持人:程濱;
(18)UV輻射誘導的秀麗線蟲延遲損傷效應研究(2012SQRL178),安徽省教育廳青年基金項目,主持人:何梅;
(19)用植物抗氧化系統評價重金屬對小麥幼苗的污染與毒性(KJ2007B341ZC),安徽省教育廳自然科學研究項目,主持人:魯先文;
(20)模擬酸雨和重金屬離子單一幾復合脅迫對油菜幼苗生長和抗氧化酶活性影響的研究(KJ2009B267Z),安徽省教育廳自然科學研究項目,主持人:魯先文;
(21)瘤胃微生物混合培養體系降解農作物秸稈產可再生能源的研究(2012A01004),淮南市科技局科技計劃項目,主持人:張科貴;
(22)基于人工納米材料沿食物鏈傳遞的生態毒理學效應研究(2012A01008),淮南市科技局科技計劃項目,主持人:羅勛;
(23)輕稀土在防治蔬菜病害和促進農藥降解中的應用(2004197),淮南市科技局科技計劃項目,主持人:汪承潤;
(24)典型工業化廢水的生態安全性監測與評價的方法和技術(2011A08010),淮南市科技局科技計劃項目,主持人:汪承潤;
(25)淮南市城市水系治理生物多樣性監測項目,淮南市發改委及亞洲開發銀行,主持人:陳錦云, 2013年;
(26)安徽G312國道淠河大橋改建工程生態影響專題報告,六安市林業局,主持人:陳錦云,2016年;
(27)大唐發電涇縣紀村水電站增效擴容工程生態影響專題報告,涇縣水利局,主持人:陳錦云,2018年;
(28)淮南市生物多樣性專項調查,淮南市林業局,主持人:陳錦云,2018年;
(29)橫排頭水利工程除險加固工程對淠河國家級濕地公園生態影響專題評估,淠史杭管理總局,主持人:陳錦云,2018年.
(二)SCI論文
(1)Wang SC, Chu ZX, Zhang KG, et al. Cadmium-induced serotonergic neuron and reproduction damages conferred lethality in the nematode Caenorhabditis elegans [J]. Chemosphere, 2018, 213: 11-18.
(2)Wang S, Teng X, Wang Y, Yu HQ, Luo X, Xu A, Wu L. Molecular control of arsenite-induced apoptosis in Caenorhabditis elegans: Roles of insulin-like growth factor-1 signaling pathway [J]. Chemosphere, Chemosphere, 2014, 112: 248–255.
(3)Wang S, Geng Z, Wang Y, Tong Z, Yu H. Essential roles of p53 and MAPK cascades in microcystin-LR-induced germline apoptosis in Caenorhabditis elegans [J]. Environ Sci Technol, 2012, 46: 3442-3448.
(4)Wang S, Geng Z, Yu Y, Guo J. Arsenite exposure induces oxidative stresses in the nematode Caenorhabditis elegans [J]. Information Technol Agricul Engineer, 2012, 134: 911-918.
(5)Wang SC, Wu LJ, Wang Y, et al. Copper-induced germline apoptosis in Caenorhabditis elegans: The independent roles of DNA damage response signaling and the dependent roles of MAPK cascades [J]. Chem-Biol Interact, 2009, 180: 151-157.
(6)Wang S, Tang M, Pei B, et al. Cadmium induced germline apoptosis in Caenorhabditis elegans: the roles of HUS1, p53 and MAPK signaling pathways [J]. Toxicol Sci, 2008, 102: 345-351.
(7)Wang SC, Zhao Y, Wu LJ, et al. Induction of germline cell cycle arrest and apoptosis by sodium arsenite in Caenorhabditis elegans [J]. Chem Res Toxicol, 2007, 20: 181-186.
(8)Rong H, Wang CR, Yu XR, et al. Carboxylated multi-walled carbon nanotubes exacerbated oxidative damage in roots of Vicia faba L. seedlings under combined stress of lead and cadmium [J]. Ecotoxicology and Environmental Safety, 2018, 161: 616-623.
(9)Wang CR, Rong H, Liu HT, et al. Detoxification mechanisms, defense responses, and toxicity threshold in the earthworm Eisenia foetida exposed to ciprofloxacin-polluted soils [J]. Science of the Total Environment, 2018, 612: 442-449.
(10)Wang CR, Liu HT, Chen JY, et al. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium [J]. Journal of Hazardous Materials, 2014, 274: 404-412.
(11)Wang CR, Wang QY, Tian Y, et al. Lanthanum ions intervened in enzymatic production and elimination of reactive oxygen species in leaves of rice seedlings under cadmium stress [J]. Environmental Toxicology and Chemistry, 2014, 33 (7): 1656-1664.
(12)Wang CR, Xiao JJ, Tian Y, et al. Antioxidant and prooxidant effects of lanthanum ions on Vicia faba L. seedlings under cadmium stress, suggesting ecological risk [J]. Environmental Toxicology and Chemistry, 2012, 31 (6): 1355-1362.
(13)Wang CR, Luo X, Tian Y, et al. Biphasic effects of lanthanum on Vicia faba L. seedlings under cadmium stress, implicating finite antioxidation and potential ecological risk [J]. Chemosphere, 2012, 86: 530-537.
(14)Wang CR, Zhang KG, He M, et al. Mineral nutrient imbalance, DNA lesion and DNA-protein crosslink involved in growth retardation of Vicia faba L. seedlings exposed to lanthanum ions [J]. Journal of Environmental Sciences, 2012, 24 (2): 214-220.
(15)Wang CR, Gu XY, Wang XR, et al. Stress response and potential biomarkers in spinach (Spinacia oleracea L.) seedlings exposed to soil lead [J]. Ecotoxicology and Environmental Safety, 2011, 74: 41-47.
(16)Wang CR, Tian Y, Wang XR, et al. Hormesis effects and implicative application in assessment of lead-contaminated soils in roots of Vicia faba seedlings [J]. Chemosphere, 2010, 80: 965-971.
(17)Wang CR, Tian Y, Wang XR, et al. Lead-contaminated soil induced oxidative stress, defense response and its indicative biomarkers in roots of Vicia faba seedlings [J]. Ecotoxicology, 2010, 19: 1130-1139.
(18)Wang CR, wang XR, Tian Y, et al. Oxidative stress, defense response and early biomarkers for lead-contaminated soil in Vicia faba seedlings [J]. Environmental Toxicology and Chemistry, 2008, 27 (4): 970-977.
(19)Wang CR, Wang XR, Tian Y, et al. Oxidative stress and potential biomarkers in tomato seedlings subjected to soil lead contamination [J]. Ecotoxicology and Environmental Safety, 2008, 71: 685-691.
(20)Wang CR, Lu XW, Tian Y, et al. Lanthanum resulted in unbalance of nutrient elements and disturbance of cell proliferation cycles in V. faba L. seedlings [J]. Biol Trace Elem Res, 2011, 143: 1174-1181.
(21)Xu XH, Huang ZC, Wang CR*, et al. Toxicological effects, mechanisms, and implied toxicity thresholds in the roots of Vicia faba L. seedlings grown in copper-contaminated soil [J]. Environmental Science and Pollution Research, 2015, 22: 13858-13869.
(22)Wang CR, He M, Shi W, et al. Toxicological effects involved in risk assessment of rare earth lanthanum on roots of Vicia faba L. seedlings [J]. Journal of Environmental Sciences, 2011, 23 (10): 1721-1728.
(23)Wang CR, Shi CE, Liu L, et al. Lanthanum element induced imbalance of mineral nutrients, HSP 70 production and DNA-protein crosslink, leading to hormetic response of cell cycle progression in root tips of Vicia faba L. seedlings [J]. Dose-Response, 2012, 10: 96-107.
(24)Wang N, Wang CR*, Bao X, et al. Toxicological effects and risk assessment of lanthanum ions on leaves of Vicia fabaL. Seedlings [J]. Journal of Rare Earths, 2011, 29 (10): 997-1003.
(25)Wang Y, Zhang L, Luo X, et al. Bisphenol A exposure triggers apoptosis via three signaling pathways in Caenorhabditis elegans [J]. RSC Advances, 2017, 7 (52): 32624-32631.
(26)Wang Y, Luo X, Yan S, et al. Using Caenorhabditis elegans as a model animal for assessing the toxicity induced by Tributyltin [C]. 2016 International Conference on Material, Energy and Environment Engineering, 2016, 102-109.
(27)Wang Y, Wang S, Luo X, et al. The roles of DNA damage-dependent signals and MAPK cascades in tributyltin-induced germline apoptosis in Caenorhabditis elegans [J]. Chemosphere, 2014, 108: 231-238.
(28)Wang Y, Jian FL, Wu JY, et al. Stress-response protein expression and DAF-16 translocation were induced in tri-n-butyltin-exposed Caenorhabditis elegans [J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89: 704-711.
(29)Wang Y, Zheng RH, Zuo ZH, et al. Relation of hepatic EROD activity and cytochrome P4501A level in Sebastiscus marmoratus exposed to benzo [a] pyrene [J]. Journal of Environmental Sciences-China, 2008, 20(1): 101-104.
(30)Zhang KG, Song L, Dong XZ. Selenomonas bovis sp. nov., isolated from yak rumen contents [J]. Int J Syst Evol Microbiol, 2009, 59: 2080-2083.
(31)*Zhang KG, Dong XZ. Proteiniclasticum ruminis gen. nov., sp. nov., a strictly anaerobic proteolytic bacterium isolated from yak rumen [J]. Int J Syst Evol Microbiol, 2010, 59: 2221-2225.
(32)Yan SB, Chen XS, Wu JY, et al. Pilot-scale production of fuel ethanol from concentrated food waste hydrolysates using Saccharomyces cerevisiae H058 [J]. Bioprocess and Biosystems Engineering, 2013, 36 (7): 937-946.
(33)Yan SB, Chen XS, Wu JY, et al. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk [J]. Applied Microbiology and Biotechnology, 2012, 94 (3): 829-838.
(34)Yan SB, Li J, Chen XS, et al. Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate [J]. Renewable Energy, 2011, 36 (4): 1259-1265.
(35)Yan SB, Wang PC, Zhai ZJ, et al. Fuel ethanol production from concentrated food waste hydrolysates in immobilized cell reactors by Saccharomyces cerevisiae H058 [J]. Journal of Chemical Technology and Biotechnology, 2011, 26 (5): 731-738.
(36)Yan SB, Tang HJ, Wang SC, et al. Improvement of kojic acid production in Aspergillus oryzae B008 mutant strain and its uses in fermentation of concentrated corn stalk hydrolysate [J]. Bioprocess and Biosystems Engineering, 2014, 37 (6): 1095-1103.
(37)Yan SB, Wang SC, Wei GG, et al. Investigation on the main parameters during the fermentation of Chinese Luzhou-flavor liquor [J]. Journal of the Institute of Brewing, 2015, 121: 145-154.
(38)Miao GP, Han J, Zhang JF, et al. A MDR transporter contributes to the different extracellular production of sesquiterpene pyridine alkaloids between adventitious root and hairy root liquid cultures of Tripterygium wilfordii Hook . f [J]. Plant Mol Bio, 2017, 95 (1-2): 51-62.
(39)Miao GP, Han J, Zhang KG, et al. Protection of melon against Fusariumwilt-root knot nematode complex by endophytic fungi Penicillium brefeldianum HS-1 [J]. 2018 (online). https://doi.org/10.1007/s13199-018-0565-0.
(40)Miao GP, Han J, Wang CR, et al. Growth inhibition and induction of systemic resistance against Pythium aphanidermatum by Bacillus simplex strain HS-2 [J]. Biocontrol Science and Technology, 2018, online.
(41)Miao GP, Zhu CS, Feng JT, et al. Effects of plant stress signal molecules on the production of wilforgine in an endophytic actinomycete isolated from Tripterygium wilfordii Hook.f [J]. Curr Microbiol, 2015, 70 (4): 571-579.
(42)Miao GP, Zhu CS, Yang Q, et al. Elicitation and in situ adsorption enhanced secondary metabolites production of Tripterygium wilfordii Hook. f. adventitious root fragment liquid cultures in shake flask and a modified bubble column bioreactor [J]. Bioprocess Biosyst Eng, 2014, 37 (4): 641-650.
(43)Miao GP, Li W, Zhang B, et al. Identification of genes involved in the biosynthesis of Tripterygium wilfordii Hook.f [J]. Secondary metabolites by suppression subtractive hybridization [J]. Plant Mol Biol Rep, 2014, 33 (4): 756-769.
(44)Miao GP, Zhu CS, Feng JT, et al. Aggregate cell suspension cultures of Tripterygium wilfordii Hook.f. for triptolide, wilforgine, and wilforine production [J]. Plant Cell Tiss Organ Cult, 2013, 112: 109-116.
(45)Luo X, Xu SM, Yang YN, et al. Insights into the ecotoxicity of silver nanoparticles transferred from Escherichia coli to Caenorhabditiselegans [J]. Sci Rep, 2016, 6: 36465.
(46)Luo X, Xu SM, Yang YN, et al. A novel method for assessing the toxicity of silver nanoparticles in Caenorhabditiselegans [J]. Chemosphere, 2017, 168: 648-657.
(47)Luo X, Xu SM, Yang YN, et al. Multi-walled carbon nanotubes induced the developmental abnormality of C. elegans [J]. J Nanosci Nanotechnol, 2016, 16: 1-7.
(48)Zhang JF, Nie LW, Wang Y, et al. The complete mitochondrial genome of the large-headed frog, Limnonectes bannaensis (Amphibia: Anura), and a novel gene organization in the vertebrate mtDNA [J]. Gene, 2009, 442: 119-127.
(49)Zhang JF, Wang X, Tian WD, et al. Evidence of positive selection on D-lactate dehydrogenases in Lactobacillus delbrueckii subsp. Bulgaricus [J]. IET Systems Biology, 2015, 9 (4): 172-179.
(50)Tong QQ, Zhou YH, Chen XS, et al. Genome shuffling and ribosome engineering of Streptomyces virginiae, for improved virginiamycinproduction [J]. Bioprocess and Biosystems Engineering, 2018 (41): 729-738.
(51)Shi CE, Wang C, Xu XN, et al. Comparison of bacterial communities in soil between nematode-infected and nematode-uninfected Pinus massoniana pinewood forest [J]. Applied Soil Ecology, 2014, 85: 11-20.
(52)Shi CE, Pan L, Wang CR, et al. Facile preparation of Ag/NiO composite nanosheets and their antibacterial activity [J]. JOM, 2016, 68 (1): 324-329.
(53)Rong H, TangYY, Zhang H, et al. The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice, J Plant Physiol, 2013, 170 (15): 1367-1373.
(54)Chu ZX, Wang XM, Wang YM, et al. Effects of coal spoil amendment on heavy metal accumulation and physiological aspects of ryegrass (Lolium perenne L.) growing in copper mine tailings [J]. Environmental Monitoring and Assessment, 2018, 190: 36.
(55)Chen J, Pan T, Hu L, et al. Mitochondrial genome of the Emberiza rustica (Emberizidae: Emberiza) [J]. Mitochondrial DNA, 2014, 25 (4): 284-285.
(56)Cheng B, Hu CW, Zhao YJ, et al. Effects of plants development and pollutant loading on performance of vertical subsurface flow constructed wetlands [J]. Int J Environ Sci tec, 2011, 8 (1): 177-186.
(57)Cheng B, Ge ZG, Zhang H, et al. Nutrient removal and biogas upgrading by microalgal strains cultured in anaerobic digested starch wastewater [J]. Journal of Chemical Technology and Biotechnology, 2016, 91: 3028-3034.
(三)發明專利
(1)汪承潤. 一種甄別和評價復雜成分工業廢水遺傳毒性的方法和技術. 授權號: 201310034237.7, 2015年.
(2)張際峰. 一種基于miRNA序列分析物種進化的方法. 專利號: ZL201510579620.X, 2017年.
(3)張際峰. 一種用于預測癌癥病人預后相關的蛋白質對的方法. 專利號: ZL201510598608.3, 2017年.
(4)仝倩倩. 一種臥式內外雙循環氣升式生物反應器. 專利號: CN 205635573 U[P]. 2016年.
(5)仝倩倩. 一種提高維吉尼亞鏈霉菌發酵生產VGM產量的方法. 專利號: CN 105907822 A[P], 2016年.
(四)獲獎
(1)汪承潤. 安徽省科學技術獎(自然科學類)三等獎(D1),2018年
(2)張際峰. 淮南市科技進步獎三等獎(R1), 2016年
(3)王順昌. 安徽省高校教學名師獎, 2014年
(4)汪承潤. 安徽省高校教學名師獎, 2015年
(五)學術交流
五、服務社會與人才培養
(一)服務社會
本學科與淮南市林檢局、安徽省林業廳、鳳臺縣林業局等單位簽訂林業有害生物普查政府購買服務項目,獲取項目資金20余萬元,項目進展順利,已通過三次中檢。
2016年6月,本學科作為獨立第三方,參與淮南市飛防美國白蛾項目驗收工作。
本學科與潘集區亞鵬盛農有限公司合作,基本解決了抗酥瓜重茬病的難題,該項技術對促進地方經濟的發展將發揮重要作用。2015年,在淮南市第四季度經濟調度會上,受到市委書記沈強的關注。本季抗重茬酥瓜已經收獲,畝產4000余公斤,品質良好,深受瓜農的高度稱贊。
本學科將進一步拓展服務領域,向生物技術外包服務、第三方檢測、食品安全、生態沼氣池建設等方向拓展,更好地服務地方經濟的發展。
(二)人才培養